Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5904, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737269

RESUMO

Glial cells have been proposed as a source of neural progenitors, but the mechanisms underpinning the neurogenic potential of adult glia are not known. Using single cell transcriptomic profiling, we show that enteric glial cells represent a cell state attained by autonomic neural crest cells as they transition along a linear differentiation trajectory that allows them to retain neurogenic potential while acquiring mature glial functions. Key neurogenic loci in early enteric nervous system progenitors remain in open chromatin configuration in mature enteric glia, thus facilitating neuronal differentiation under appropriate conditions. Molecular profiling and gene targeting of enteric glial cells in a cell culture model of enteric neurogenesis and a gut injury model demonstrate that neuronal differentiation of glia is driven by transcriptional programs employed in vivo by early progenitors. Our work provides mechanistic insight into the regulatory landscape underpinning the development of intestinal neural circuits and generates a platform for advancing glial cells as therapeutic agents for the treatment of neural deficits.


Assuntos
Neurogênese , Neuroglia , Adulto , Humanos , Neurogênese/genética , Diferenciação Celular , Sistema Nervoso Autônomo , Técnicas de Cultura de Células
2.
Curr Opin Immunol ; 77: 102183, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35533467

RESUMO

The nervous system and immune system are important interfaces of the gastrointestinal tract that sense, integrate and respond to environmental stimuli and challenges. Enteric glial cells (EGCs), the non-neuronal cells of the enteric nervous system, were long considered mere bystanders only providing support for their workhorse neuronal neighbours. However, work by many groups has demonstrated that EGCs are important nodes in the intestinal tissue circuitry that regulate gastrointestinal barrier function, immunity, host defence and tissue repair. More recent studies have also begun to uncover the cellular interactions and molecular mechanisms that underpin the important functions of EGCs in intestinal physiology and pathophysiology. Here, we review recent literature investigating the roles of EGCs in intestinal immunity and tissue homeostasis.


Assuntos
Sistema Nervoso Entérico , Neuroglia , Comunicação Celular , Sistema Nervoso Entérico/fisiologia , Humanos , Intestinos , Neurônios/fisiologia
3.
Cell Stem Cell ; 29(1): 3-4, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995494

RESUMO

Intestinal stem cells continuously self-renew and differentiate into a variety of specialized epithelial cells that maintain gut health. New research in this issue of Cell Stem Cell (Baghdadi et al., 2022) shows that enteric glial cells regulate the intestinal stem cell niche during regeneration and disease through the production of WNT ligands.


Assuntos
Neuroglia , Nicho de Células-Tronco , Células Epiteliais , Células-Tronco
4.
Nature ; 599(7883): 125-130, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34671159

RESUMO

Tissue maintenance and repair depend on the integrated activity of multiple cell types1. Whereas the contributions of epithelial2,3, immune4,5 and stromal cells6,7 in intestinal tissue integrity are well understood, the role of intrinsic neuroglia networks remains largely unknown. Here we uncover important roles of enteric glial cells (EGCs) in intestinal homeostasis, immunity and tissue repair. We demonstrate that infection of mice with Heligmosomoides polygyrus leads to enteric gliosis and the upregulation of an interferon gamma (IFNγ) gene signature. IFNγ-dependent gene modules were also induced in EGCs from patients with inflammatory bowel disease8. Single-cell transcriptomics analysis of the tunica muscularis showed that glia-specific abrogation of IFNγ signalling leads to tissue-wide activation of pro-inflammatory transcriptional programs. Furthermore, disruption of the IFNγ-EGC signalling axis enhanced the inflammatory and granulomatous response of the tunica muscularis to helminths. Mechanistically, we show that the upregulation of Cxcl10 is an early immediate response of EGCs to IFNγ signalling and provide evidence that this chemokine and the downstream amplification of IFNγ signalling in the tunica muscularis are required for a measured inflammatory response to helminths and resolution of the granulomatous pathology. Our study demonstrates that IFNγ signalling in enteric glia is central to intestinal homeostasis and reveals critical roles of the IFNγ-EGC-CXCL10 axis in immune response and tissue repair after infectious challenge.


Assuntos
Homeostase , Intestinos/imunologia , Intestinos/fisiologia , Neuroglia/imunologia , Neuroglia/fisiologia , Regeneração , Túnica Adventícia/imunologia , Túnica Adventícia/parasitologia , Animais , Quimiocina CXCL10/imunologia , Duodeno/imunologia , Duodeno/parasitologia , Duodeno/patologia , Duodeno/fisiologia , Feminino , Gliose , Homeostase/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Interferon gama/imunologia , Intestinos/parasitologia , Intestinos/patologia , Masculino , Camundongos , Nematospiroides dubius/imunologia , Nematospiroides dubius/patogenicidade , Transdução de Sinais/imunologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/patologia
6.
Am J Physiol Lung Cell Mol Physiol ; 310(6): L551-61, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26719149

RESUMO

Inflammatory diseases of the respiratory system such as asthma and chronic obstructive pulmonary disease are increasing globally and remain poorly understood conditions. Although attention has long focused on the activation of type 1 and type 2 helper T cells of the adaptive immune system in these diseases, it is becoming increasingly apparent that there is also a need to understand the contributions and interactions between innate immune cells and the epithelial lining of the respiratory system. Cigarette smoke predisposes the respiratory tissue to a higher incidence of inflammatory disease, and here we have used zebrafish gills as a model to study the effect of cigarette smoke on the respiratory epithelium. Zebrafish gills fulfill the same gas-exchange function as the mammalian airways and have a similar structure. Exposure to cigarette smoke extracts resulted in an increase in transcripts of the proinflammatory cytokines TNF-α, IL-1ß, and MMP9 in the gill tissue, which was at least in part mediated via NF-κB activation. Longer term exposure of fish for 6 wk to cigarette smoke extract resulted in marked structural changes to the gills with lamellar fusion and mucus cell formation, while signs of inflammation or fibrosis were absent. This shows, for the first time, that zebrafish gills are a relevant model for studying the effect of inflammatory stimuli on a respiratory epithelium, since they mimic the immunopathology involved in respiratory inflammatory diseases of humans.


Assuntos
Citocinas/metabolismo , Mucosa Respiratória/imunologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Colágeno/metabolismo , Citocinas/genética , Brânquias/imunologia , Brânquias/metabolismo , Brânquias/patologia , NF-kappa B/metabolismo , Mucosa Respiratória/metabolismo , Fumaça/efeitos adversos , Nicotiana/efeitos adversos , Peixe-Zebra
7.
Nat Commun ; 5: 5864, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25536194

RESUMO

Prolonged ingestion of a cholesterol- or saturated fatty acid-enriched diet induces chronic, often systemic, auto-inflammatory responses resulting in significant health problems worldwide. In vivo information regarding the local and direct inflammatory effect of these dietary components in the intestine and, in particular, on the intestinal epithelium is lacking. Here we report that both mice and zebrafish exposed to high-fat (HFDs) or high-cholesterol (HCDs) diets develop acute innate inflammatory responses within hours, reflected in the localized interleukin-1ß-dependent accumulation of myeloid cells in the intestine. Acute HCD-induced intestinal inflammation is dependent on cholesterol uptake via Niemann-Pick C1-like 1 and inflammasome activation involving apoptosis-associated Speck-like protein containing a caspase recruitment domain, which leads to Caspase-1 activity in intestinal epithelial cells. Extended exposure to HCD results in localized, inflammation-dependent, functional dysregulation as well as systemic pathologies. Our model suggests that dietary cholesterol initiates intestinal inflammation in epithelial cells.


Assuntos
Colesterol na Dieta/efeitos adversos , Dieta Hiperlipídica , Fígado Gorduroso/etiologia , Inflamação/imunologia , Mucosa Intestinal/imunologia , Animais , Benzoxazóis/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Caspase 1/genética , Caspase 1/imunologia , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/imunologia , Fígado Gorduroso/patologia , Feminino , Imunidade Inata , Inflamassomos/efeitos dos fármacos , Inflamação/etiologia , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/biossíntese , Interleucina-1beta/metabolismo , Mucosa Intestinal/patologia , Intestinos/imunologia , Intestinos/patologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células Mieloides/imunologia , Células Mieloides/patologia , NF-kappa B/genética , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Triazóis/farmacologia , Peixe-Zebra
8.
Interface Focus ; 3(3): 20130001, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23853708

RESUMO

Intravital microscopy has become increasingly popular over the past few decades because it provides high-resolution and real-time information about complex biological processes. Technological advances that allow deeper penetration in live tissues, such as the development of confocal and two-photon microscopy, together with the generation of ever-new fluorophores that facilitate bright labelling of cells and tissue components have made imaging of vertebrate model organisms efficient and highly informative. Genetic manipulation leading to expression of fluorescent proteins is undoubtedly the labelling method of choice and has been used to visualize several cell types in vivo. This approach, however, can be technically challenging and time consuming. Over the years, several dyes have been developed to allow rapid, effective and bright ex vivo labelling of cells for subsequent transplantation and imaging. Here, we review and discuss the advantages and limitations of a number of strategies commonly used to label and track cells at high resolution in vivo in mouse and zebrafish, using fluorescence microscopy. While the quest for the perfect label is far from achieved, current reagents are valuable tools enabling the progress of biological discovery, so long as they are selected and used appropriately.

9.
Dev Comp Immunol ; 38(1): 187-92, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22561072

RESUMO

Nfil3, a transcription factor that has an array of functions in immune cells, has been described as key regulator of CD8α(+) dendritic cell and natural killer cell development in mice. In this report we show that Nfil3 is enriched in the myeloid compartment of adult zebrafish including eosinophils. Knockdown of Nfil3 in pu.1:GFP embryos resulted in a reduced number of myeloid cells as early as 24h post-fertilization, while erythropoiesis was unaffected. Using mpx and fms-fluorescent transgenic fish we found that all myeloid cell lineages, and in particular macrophages, had reduced numbers at 4days post-fertilization. This was reflected by less myeloid cells accumulating at a wound site. Pu.1, l-plastin, csf1r and mpx had reduced expression in Nfil3 morphants while runx1, gata1 and rag1 were unaffected. Collectively, these results describe a conserved expression pattern of Nfil3 in evolutionarily divergent species and indicate that Nfil3 is central to myeloid lineage commitment.


Assuntos
Mielopoese , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/metabolismo , Morfolinos/metabolismo , Células Mieloides/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética
10.
Haematologica ; 96(12): 1753-60, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21933862

RESUMO

BACKGROUND: Controversy persists regarding the role of Notch signaling in myelopoiesis. We have used genetic approaches, employing two Notch zebrafish mutants deadly seven (DES) and beamter (BEA) with disrupted function of notch1a and deltaC, respectively, and Notch1a morphants to analyze the development of leukocyte populations in embryonic and mature fish. DESIGN AND METHODS: Myelomonocytes were quantified in early embryos by in situ hybridization using a myeloper-oxidase (mpx) probe. Morpholinos were used to knock down expression of Notch1a or DeltaC. Wound healing assays and/or flow cytometry were used to quantify myelomonocytes in 5-day post-fertilization (dpf) Notch mutants (BEA and DES), morphants or pu.1:GFP, mpx:GFP and fms:RFP transgenic embryos. Flow cytometry was performed on 2-3 month old mutant fish. RESULTS: The number of mpx(+) cells in embryos was reduced at 48 hpf (but not at 26 hpf) in DES compared to WT. At 5 dpf this was reflected by a reduction in the number of myelomonocytic cells found at the wound site in mutants and in Notch1a morphants. This was due to a reduced number of myelomonocytes developing rather than a deficit in the migratory ability since transient inhibition of Notch signaling using DAPT had no effect. The early deficit in myelopoiesis was maintained into later life, 2-3 month old BEA and DES fish having a decreased proportion of myelomonocytes in both the hematopoietic organ (kidney marrow) and the periphery (coelomic cavity). CONCLUSIONS: Our results indicate that defects in Notch signaling affect definitive hematopoiesis, altering myelopoiesis from the early stages of development into the adult.


Assuntos
Embrião não Mamífero/embriologia , Proteínas de Homeodomínio/metabolismo , Mielopoese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/citologia , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Organismos Geneticamente Modificados/embriologia , Organismos Geneticamente Modificados/genética , Receptor Notch1/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA